

#### **CONDENSING BOILER TECHNOLOGY**

**Presented by:** 

Jim Cooke Mechanical Solutions NW 1125 Andover Park W. Bldg. D Seattle, WA 98188 Email: jim@msinw.com



Foil 1

Nov 2005



# What is condensing boiler technology?



Foil 2 Nov 2005

#### **CONVENTIONAL BOILER TECHNOLOGY** Non-condensing construction







Fin tube boiler





Foil 3 Nov 2005

#### **ENERGY CONTENT OF NATURAL GAS**





# \_Heat that can be measured or felt by a change in temperature



Foil 4

Nov 2005





#### **CONVENTIONAL BOILER HEAT FLOW**





#### HEAT RECOVERY FROM FLUE GASES



Simplified Chemical Combustion Formula:

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ 





#### LATENT HEAT RECOVERY





- Water vapor turns to liquid when it is reduced in temperature.
- Energy is released when vapor turns to liquid



#### LATENT HEAT RECOVERY 1 pound of water



)5





- Water vapor condenses below the dew point temperature
- CO<sub>2</sub>% of flue gas influences dew point temperature







#### EFFICIENCY INCREASES DUE TO FLUE GAS CONDENSATION



- **Combines the following:**
- 1. Additional latent heat gain from condensate
- 2. Lower flue gas loss:
  - The flue gas temperature is lower because the sensible and latent heat is almost completely transferred to the boiler water
- 3. Lower radiant standby losses:
  - Due to lower boiler water temperatures



Fnil 11

Nov 2005



# Why use condensing boiler technology?



Foil 15 Nov 2005







#### **MORE USABLE HEAT THROUGH CONDENSATION**







Foil 17

#### FACTORS INFLUENCING EFFECTIVENESS OF CONDENSING TECHNOLOGY





#### FACTORS INFLUENCING EFFECTIVENESS **OF CONDENSING TECHNOLOGY**







#### SIMPLIFIED CONDENSING BOILER **OPERATION**









Foil 21 Nov 2005



#### TYPICAL HYDRONIC WATER TEMPERATURE REQUIREMENTS:

#### High temperature:

- Finned tube baseboard
- Air heat fancoils
- Pool/spa heat exchangers
- DHW production

#### **Medium temperature:**

- Cast iron radiators
- Low mass radiant floor ie: wood joist floors

#### Low temperature:

- High mass radiant floor ie: concrete floors
- Snowmelting systems Ashrae Presentation

100 - 140 °F

140 - 190 °F

140 - 180 °F

160 - 180 °F

150 - 190 °F

100 -150 °F

80 - 120 °F 80 - 120 °F











#### HYDRONIC WATER TEMPERATURES







#### **IMPACT OF SYSTEM TEMPERATURES ON CONDENSATION**

**Example 3: Supply/return temperature:** 

40/30°C, 104/86°F



#### **CONDENSING / NON CONDENSING RATIO**

**ASHRAE** weather data for Boston, MA





#### **CONDENSING / NON CONDENSING RATIO**

#### **ASHRAE** weather data for Boston, MA





#### SYSTEM WATER TEMPERATURE DROP









#### **ANNUAL FUEL UTILIZATION EFFICIENCY** For residential boilers < 300 MBH



#### COMBUSTION EFFICIENCY Testing for non-condensing gas commercial boilers

#### ANSI Z21.13 / CSA 4.9-2000



#### FACTORS INFLUENCING EFFECTIVENESS OF CONDENSING TECHNOLOGY





Foil 33

Nov 2005





influences dew point

**=Higher Dew point =More Condensation** 

=Lower Dew point **=Less Condensation** 





#### **CONDENSING BOILER TECHNOLOGY**



# What influences the CO<sub>2</sub>% ?

## **THE BURNER!**



Foil 35 Nov 2005

#### NATURAL GAS COMBUSTION







Foil 36

Nov 2005

### NATURAL GAS COMBUSTION **Atmospheric Burner technology**





## NATURAL GAS COMBUSTION Power-fired burner technology







#### **BURNER REQUIREMENTS FOR CONDENSING BOILERS**

- Combustion with minimal excess air
  - CO<sub>2</sub>: 9.5 to 10%
  - Excess air: 20 25%
- Fully modulating input
- Precise calibration thru entire firing range
- Low NO<sub>x</sub> and CO emissions







#### **DEW POINT AND ALTITUDE**





#### FACTORS INFLUENCING EFFECTIVENESS OF CONDENSING TECHNOLOGY







**Ashrae Presentation** 

Foil 41 Nov 2005



INCORRECT

CORRECT





#### CONDENSING BOILERS IN TWO TEMPERATURE SYSTEMS







#### CONDENSING BOILERS IN HIGH FLOW SYSTEMS









#### INJECTION PUMPING WITH CONDENSING BOILERS







#### **COMBINATION OF BOILERS**







**Ashrae Presentation** 

Foil 46 Nov 2005

#### MULTIPLE FUNCTION, MULTIPLE TEMPERATURE SYSTEM





#### **CONDENSING BOILER TECHNOLOGY**



## **Construction requirements of condensing boiler technology**



Foil 48 Nov 2005

#### PHYSICAL REQUIREMENTS OF THE HEAT EXCHANGER SURFACES





#### PHYSICAL REQUIREMENTS OF THE FLUE GAS AND CONDENSATE PASSAGE WAYS





#### **CONDENSING BOILER CONSTRUCTION**



# Condensing boiler requirements:

- Counterflow principle for flue gas and boiler water – optimal heat transfer
- Parallel flow direction for flue gas and condensate – uniform flow with self-cleaning effect of heat transfer surfaces



#### **HEAT EXCHANGER CONSTRUCTION**





# Why is material construction of the boiler heat exchanger so important?





Foil 52 Nov 2005

#### **pH VALUES OF VARIOUS FLUIDS**





#### MATERIAL REQUIREMENTS FOR CONDENSING BOILERS



- Highly corrosion resistant
- High strength with thin wall thickness
- Formable
- Long term reliability





#### FINNED TUBE HEAT EXCHANGERS





New aluminum fin heat exchanger surface

Same heat exchanger surface after short term use





# How much condensate will be produced?

# What do we do with it?



Foil 56 Nov 2005

|     | Components<br>Tested | Drinking Water<br>Limits | Wine                                                  | Vertomat<br>05 - 89<br>DIN-DVGW Test        |                     |
|-----|----------------------|--------------------------|-------------------------------------------------------|---------------------------------------------|---------------------|
|     |                      | mg/ltr.                  | mg/ltr.                                               | mg/ltr.                                     |                     |
|     | Lead                 | 0.04                     | 0.1 - 0.3                                             | < 0.01 <b>C</b>                             | omparison           |
|     | Cadmium              | 0.005                    | 0.001                                                 | < 0.005 <b>O</b>                            | f condensate        |
|     | Chrome               | 0.05                     | 0.06 - 0.03                                           | < 0.01 C                                    | omponents           |
|     | Copper               | 3.0*                     | 0.5                                                   | < 0.01                                      |                     |
|     | Nickel               | 0.05                     | 0.05 - 0.03                                           | < 0.01                                      |                     |
|     | Mercury              | 0.001                    | 0.00005                                               | < 0.0001                                    |                     |
|     | Vanadium             | -                        | 0.26 - 0.06                                           | not determined                              |                     |
|     | Zinc                 | 5.0*                     | 3.5 - 0.5                                             | < 0.05                                      |                     |
|     | Tin                  | -                        | 0.7 - 0.01                                            | < 0.05                                      |                     |
|     | Sulphate             | 240                      | 5 - 10                                                | 4.6                                         |                     |
| ۵۵۲ | pH Value             | 6.5 - 9.5                | <b>3 - 4</b><br>(at 1.9 - 07 g/ltr.<br>tartaric acid) | <b>3.5 - 5</b><br>Without<br>neutralization | Foil 57<br>Nov 2005 |

#### **CONDENSATE FLOW RATE**





Foil 58 Nov 2005



#### **CONDENSATE FLOW RATE**







#### **CONDENSATE DISPOSAL**



Nov 2005



#### **CONDENSATE NEUTRALIZATION**







#### CONSTRUCTIVE AND PHYSICAL REQUIREMENTS FOR CONDENSING BOILERS



- Combustion with minimal excess air (high CO<sub>2</sub>)
- Fully modulating burner
- Low heat exchanger surface temperatures
- Parallel flow of flue gas and condensate
- Counter-flow of flue gas and heating water
- Highly corrosion resistant material



Foil 62 Nov 2005

#### SYSTEM DESIGN REQUIREMENTS FOR CONDENSING BOILERS



- Low temperature heat release surfaces
- Modulate water temperatures with outdoor reset controls
- Higher system water temperature drops
- Piping layouts to reduce boiler return water temperatures



Foil 63

Nov 2005



#### **CONDENSING BOILER TECHNOLOGY**

#### **THANK-YOU**

Jim Cooke Mechanical Solutions NW 1125 Andover Park W. Bldg. D Seattle, WA 98188 E-mail: jim@msinw.com



Foil 64

Nov 2005