State-of-the-Art Hydronic Design Concepts for Solar Thermal Professionals

May 2, 2009 - Sustainable Energy Summit Presented by: John Siegenthaler, P.E. Principal, Appropriate Designs, Holland Patent, NY

©Copyright 2009, J. Siegenthaler, All rights reserved. No part of this document or file may be used without the permission of the author

All diagrams shown are conceptual only, and do not represent ready to install system designs.

Today's Topics...

- SECTION 1: Thermal & Hydraulic Equilibrium conditions EVERY hydronic system seeks
- SECTION 2: Hydraulic Separation: Life After Primary / Secondary Piping
- SECTION 3: The future of Low Power Pumping about as Green as it gets!
- SECTION 4: BTU Metering a great opportunity for energy savings through hydronics
- SECTION 5: Homerun Distribution Systems
- SECTION 6: System design Concepts for Solar Space Heating & Domestic Hot Water

Thermal & Hydraulic Equilibrium Conditions <u>EVERY</u> hydronic system seeks

Most systems that involve energy input and energy output seek to operate at "equilibrium" conditions

An airplane, in level flight, <u>always</u> stabilizes at an airspeed where the rate of energy generated by its engine exactly matches the rate energy is dissipated by the drag of the plane's body

Want to go faster ?

A car, always seeks an speed where the rate of energy generated by its engine exactly matches the rate energy is dissipated by the drag of the body plus frictional dissipation of other moving components.

Want to go faster ?

A boat, stabilzes at a speed where the rate of energy generated by its engine exactly matches the rate energy is dissipated by the drag of the body plus frictional dissipation of other moving components.

Want to go faster ?

A cyclist, always attains a speed where the rate of energy generated by its rider exactly matches the rate energy is dissipated by the drag of the body plus frictional dissipation of other moving components.

Want to go faster ?

In a hydronic heating system, thermal energy (heat) is added to the water by the heat source.

Everything else the heated water flows through dissipates some of that heat.

Every hydronic system always seeks to operate at a water temperature where the rate of thermal energy input by the heat source equal the rate of thermal energy release by the rest of the system.

If thermal equilibrium exists, the setting on the high limit control is irrelevant.

At thermal equilibrium, the water temperature leaving the heat source remains constant.

Think of the bucket with holes below as a heating system.

When the rate of heat input and heat output are low, the water level stabilizes at a low height.

When the rate of heat input and heat output are high, the water level stabilizes at a higher level.

• The system "doesn't care" if the proper amount of heat is being delivered.

• The system "doesn't care" if the operating conditions are safe.

• The system "doesn't care" if the operating conditions are conducive to long system life or high efficiency.

It's possible to predict the supply water temperature at which equilibrium will occur.

The heat output of a hydronic heat emitter is approximately proportional to the difference between supply water temperature and room air temperature.

$$Q_{output} = c \times (T_{\rm s} - T_{\rm r})$$

Where:

 Q_{output} = heat output of heat emitter (Btu/hr) c= a number dependent on the type and size of heat emitter (Btu/hr/°F) T_s = water temperature supplied to heat emitter (°F) T_r = room air temperature (°F)

(Ts-Tr) is called the "driving delta T." It's what drives heat out of the heat emitter and into the room.

$$Q_{output} = c \times (T_{\rm s} - T_{\rm r})$$

This relationship holds true for a <u>single</u> heat emitters, OR an <u>entire group</u> of heat emitters that form a hydronic distribution system

For example, suppose you have a building where all the heat emitters in the system release 100,000 Btu/hr into a 70 °F space when supplied with water at 170 °F.

The value of the "c" can be determined (for this system) as follows:

$$c = \frac{Q}{(T_{\rm s} - T_{\rm r})} = \frac{100,000}{(170 - 70)} = 1000 \frac{Btu}{hr \cdot {}^{\rm o}F}$$

This distribution system releases 1,000 Btu/hr into the building for each degree F the supply water temperature exceeds the room air temperature.

Hence, if the supply water temperature was 130 °F, and the space air temperature was 68 °F, this system would provide the following heat output to the building:

$$Q = c \times (T_s - T_r) = 1000 \times (130 - 68) = 62,000 Btu / hr$$

This relationship can be represented by a graph:

You can plot this graph by knowing the supply water temperature at design load conditions, the room temperature, and the design load.

The slope of the line depends on the number and size of the heat emitters in the distribution system. The larger the surface area of the heat emitters the *steeper* the slope of the graph.

- Steeper lines mean that a given rate of heat release is achieved at lower values of the driving delta T.
- Steeper lines favor lower supply water temperature.

• This in turn improves the efficiency of condensing boilers, geothermal heat pumps and solar collectors.

For floor heating steeper lines are achieved by spacing tubing closer together. This lowers the supply temperature at which the floor can deliver a given rate of heat output.

• Steeper lines mean that a given rate of heat release is achieved at lower values of the driving delta T.

• Steeper lines favor lower supply water temperature.

• This in turn improves the efficiency of condensing boilers, geothermal heat pumps and solar collectors.

Adding the desired room temperature to the numbers along the bottom axis makes another useful variant.

You can use a distribution system heat output graph like this to find the supply temperature at which thermal equilibrium occurs with a given heat source.

- 1 Locate the heat output rate of heat source on vertical scale.
- 2 Draw horizontal line to right to intersect sloping line.
- 3 Draw vertical line down to lower axis to read supply temperature.

Control settings can sometimes "interfere" with thermal equilibrium.

1. If the temperature limiting control of the heat source is set *below* the thermal equilibrium temperature for a system, the heat emitters in the distribution system will not get hot enough to dissipate the full (steady state) output of the heat source.

2. The water temperature leaving the heat source climbs as the system operates, eventually reaching the limit control setting.

3. The heat source (burner, compressor, etc.) is turned off.

4. The water temperature leaving the heat source decrease as heat is released by the distribution system.

5. Eventually, the temperature drops to the point where the limit controller turns the heat source back on, and the cycle repeats.

This is a very common in most systems during partial load conditions. It will also occur under design load conditions in systems with oversized heat sources.

Control settings can sometimes "interfere" with thermal equilibrium.

If the temperature limiting control on the heat source is set *above* the thermal equilibrium temperature for a system, <u>water leaving the heat source will never reach</u> <u>that temperature unless the load is reduced or turned</u> <u>off.</u>

This is why some systems never reach the setpoint of the limit controller even after hours of operation.

The distribution system doesn't need to climb to the boiler limit control setting to dissipate all the heat the boiler can send it.

The temperature in the distribution system only climbs as high as necessary to dissipate the heat coming to it from the heat source.

This is acceptable provided the heat source is not damaged by operating at the low temperature - not good for conventional boilers.

Imagine a hydronic floor heating system having 8 parallel 350 foot circuits of 1/2" PEX tubing embedded in a bare concrete slab. The system supplies 50,000 Btu/hr, and is piped as shown.

Use the concept of thermal equilibrium to study the supply temperature required versus heat emitter size as you contemplate future systems.

Once you know the temperature at which the system "wants to operate" you can estimate the tradeoff between boiler (or solar collector) efficiency and heat emitter cost.

Keep in mind that lower system supply temperatures always favor higher efficiency of the heat source.

In addition to thermal energy, hydronic systems deal with mechanical energy.

This mechanical energy is called HEAD.

Head energy is imparted to a fluid by the circulator.

Head energy is dissipated from the fluid by everything that flow flows through.

In North America, head energy is measured in FEET of head.

It comes from the following mathematical simplification.

What is the EVIDENCE that head energy has been added to a fluid is?

- a. The fluid's velocity increases
- b. The fluid's flow rate increases
- c. The fluid's temperature increases
- d. None of the above

The head energy dissipated by a hydronic circuit is represented by a system curve.

Notice that the units on the vertical axis are the same as with a pump curve (feet of head)

For fluid filled closed loop circuits the system curve passes through 0,0 as shown.

Construct the curve by calculating head loss at several flow rates, plot the points, and draw a smooth curve through them.

Hydraulic equilibrium occurs when the head energy added by the circulator exactly matches the head energy dissipation by the other components in the system.

This condition is usually achieved within a few seconds of the circulator turning on.

Hydraulic equilibrium occurs when the head energy added by the circulator exactly matches the head energy dissipation by the other components in the system.

This condition can be found by plotting the pump curve of the circulator, and the system curve of the circuit on the same graph.

The system curve for a closed, fluid-filled hydronic circuit constructed of smooth tubing can be found as follows:

$$H_L = k \times L \times f^{1.75}$$

Where:

 H_L = head loss of circuit in feet (feet of head) k = a constant based on the fluid and pipe size (see table for k values based on water at 140°F) L=total equivalent length of the circuit (ft) f = flow rate through the circuit (gpm) 1.75 = an exponent of the flow rate

Tubing size / type	(based on 2 ft/sec) (gpm)	(based on 4 ft/sec) (gpm)	k value
3/8" copper	1.0	2.0	0.04828
1/2" copper	1.6	3.2	0.0158
3/4" copper	3.2	6.5	0.00294
1" copper	5.5	10.9	0.000844
1.25" copper	8.2	16.3	0.000323
1.5" copper	11.4	22.9	0.000146
2" copper	19.8	39.6	0.0000396
2.5" copper	30.5	61.1	0.0000142
3" copper	43.6	87.1	0.0000061
3/8" PEX	0.6	1.3	0.139
1/2" PEX	1.2	2.3	0.0373
5/8" PEX	1.7	3.3	0.0140
3/4" PEX	2.3	4.6	0.00729
1" PEX	3.8	7.5	0.00223
1.25" PEX	5.6	11.2	0.0007923
1.5" PEX	7.8	15.6	0.0003588
2" PEX	13.4	26.8	0.0000999
3/8" PEX-AL-PEX	0.6	1.2	0.159
1/2" PEX-AL-PEX	1.2	2.5	0.0393
5/8" PEX-AL-PEX	2	4.0	0.00977
3/4" PEX-AL-PEX	3.2	6.4	0.00333
1" PEX-AL-PEX	5.2	10.4	0.00120

FITTING	NOMINAL TUBING SIZE									
	1/2"	3/4"	1"	1.25"	1.5"	24	2.5"	3"		
90° elbow	1.0	2.0	2.5	3.0	4.0	5.5	7.0	9.0		
45° elbow	0.5	0.75	1.0	1.2	1,5	2.0	2.5	3.5		
tee(straight)	0.3	0.4	0.45	0.6	0.8	1.0	0.5	1.0		
tee(side)	2.0	3.0	4.5	5.5	7.0	9.0	12.0	15.0		
gate valve	0.2	0.25	0.3	0.4	0.5	0.7	1.0	1.5		
ball valve	1.9	2.2	4.3	7.0	6.6	14.0	0.5	1.0		
flow check	N/A	83.0	54.0	74	57	177	N/A	N/A		
globe valve	15.0	20.0	25.0	36.0	46.0	56.0	104.0	130.0		

The flow rate at which hydraulic equilibrium exists changes whenever there is a change to the pump curve, OR a change to the system curve.

Just remember that EVERY hydronic system will ALWAYS adjust itself to a condition of hydraulic equilibrium - there's no way around it.

A variable speed circulator can be controlled so that hydraulic equilibrium always occurs at the same differential pressure, regardless of the number of zones that are operating

Use the concepts of THERMAL EQUILIBRIUM and HYDRAULIC EQUILIBRIUM to:

- predict performance of systems being designed
- diagnosing the performance of hydronic systems that are "not performing as expected."

<u>Remember, EVERY hydronic system ALWAYS seeks</u> <u>both of these "balanced" operating conditions.</u>

In this system, hydraulic equilibrium occurs at 7.6 gpm

Hydraulic Separation Beyond Primary / Secondary Piping

Modern compact boilers have much higher flow resistance than cast iron boilers.

If they are simply substituted for cast iron boiler problems are likely to develop, most notably interference between simultaneously operating circulators.

The solution to this problem is <u>hydraulic separation</u>. In short, preventing flow in one circuit from interfering with flow in another circuit.

In systems with hydraulic separation the designer can now *think of each circuit as a "stand-alone" entity:*

- Simplifying system analysis
- Preventing flow interference

Hydraulic separation is a new term to hydronic system designers in North America.

Primary / secondary piping, using closely spaced tees, is the best known form of hydraulic separation now used in North America

The secondary circuit is "hydraulically separated" from the primary circuit by the closely spaced tees.

This concept can be extended to multiple secondary circuits served by a common primary loop:

This configuration is more called a *series* primary/secondary system:

A *parallel* primary/secondary piping configuration provides the same water temperature to each secondary circuit:

In addition, both *series* and *parallel* primary/secondary systems require a primary circulator.

This adds to the installed cost of the system AND add hundreds, even thousands of dollars in operating cost over a typical system life. An example of primary loop circulator operating cost:

Consider a system that supplies 500,000 Btu/hr at design load. Flow in the primary loop is 50 gpm with a corresponding head loss of 15 feet (6.35 psi pressure drop). Assume a wet rotor circulator with wire-towater efficiency of 25 is used as the primary circulator.

The input wattage to the circulator can be estimated as follows:

$$W = \frac{0.4344 \times f \times \Delta P}{0.25} = \frac{0.4344 \times 50 \times 6.35}{0.25} = 552 watts$$

Assuming this primary circulator runs for 3000 hours per year its first year operating cost would be:

1st year cost =
$$\left(\frac{3000hr}{yr}\right)\left(\frac{552w}{1}\right)\left(\frac{1kwhr}{1000whr}\right)\left(\frac{\$0.10}{kwhr}\right) = \$165.60$$

Assuming electrical cost escalates at 4% per year the total operating cost over a 20-year design life is:

$$c_T = c_1 \times \left(\frac{(1+i)^N - 1}{i}\right) = \$165.60 \times \left(\frac{(1+0.04)^{20} - 1}{0.04}\right) = \$4,931$$

This, combined with eliminating the multi-hundred dollar installation cost of the primary circulator obviously results in significant savings.

Beyond Primary / Secondary Piping...

How is it possible to achieve the **benefits** of hydraulic separation and equal supply temperatures without the **complexities** and **costs** of a parallel system and primary circulator?

Some systems begin and end individual load circuits in the mechanical room:

Another option is a specialized component called a *hydraulic separator* between the boiler and the load circuit:

The low vertical velocity inside the separator produces minimal pressure drop top to bottom and side to side. This results in hydraulic separation between the boiler circuits and load circuits.

Some hydraulic separators also provide <u>air separation</u> and <u>sediment separation</u>.

To achieve these functions in a system using closely spaced tees additional components are required:

As the flow rates of the boiler circuit and distribution system change there are three possible scenarios:

- Flow in the distribution system is **equal** to the flow in the boiler circuit.
- Flow in the distribution system is greater than flow in the boiler circuit.
- Flow in the distribution system is less than flow in the boiler circuit.

Each case is governed by basic thermodynamic...

Case #1: Distribution flow equals boiler flow:

Very little mixing occurs because the flows are balanced.

Case #2: Distribution flow is greater than boiler flow:

The mixed temperature (T_2) supplied to the distribution system can be calculated with:

$$T_{2} = \left(\frac{(f_{4} - f_{1})T_{4} + (f_{1})T_{1}}{f_{4}}\right)$$

Where:

f4 = flow rate returning from distribution system (gpm)

f1 = flow rate entering from boiler(s) (gpm)

T4 = temperature of fluid returning from distribution system (°F)

T1 = temperature of fluid entering from boiler ($^{\circ}F$)

Mixing occurs within the hydraulic separator.

Case #3: Distribution flow is less than boiler flow:

Heat output is temporarily higher than current system load.

Heat is being injected faster than the load is removing heat.

The temperature returning to the boiler (T_3) can be calculated with:

$$T_{2} = \left(\frac{\left(f_{4} - f_{1}\right)T_{4} + \left(f_{1}\right)T_{1}}{f_{4}}\right)$$

Where: T3 = temperature of fluid returned to boiler(s) (°F) f1 = flow rate entering from boiler(s) (gpm) f2, f4 = flow rate of distribution system (gpm) T1 = temperature of fluid entering from boiler (°F) T4 = temperature of fluid returning from distribution system (°F)

Mixing occurs within the hydraulic separator.

Use of a hydraulic separator alone does not prevent flue gas condensation under all circumstances.

To ensure such protection automatic mixing devices can be installed:

Sizing & Application:

Hydraulic separators must be properly sized to provide proper hydraulic, air, and dirt separation. Excessively high flow rates will impede these functions.

Pipe size of hydraulic	1"	1.25"	1.5"	2"	2.5"	3"	4"	6"
Max flow								
rate (GPM)	11	18	26	40	80	124	247	485

The header piping connecting to the distribution side of the Hydro Separator should be sized for a flow of 4 feet per second or less under maximum flow rate conditions.

Hydraulic separators are an ideal way to interface multiple loads to a Multiple boiler system.

Example of Hydro Separator Installation in Old System:

Because hydraulic separators remove sediment fromsystems they're ideal for applications where new boilers are retrofit to old distribution systems.

Example of Hydro Separator Installation in Old System:

Because hydraulic separators remove sediment fromsystems they're ideal for applications where new boilers are retrofit to old distribution systems.

Hydraulic Separation in "Micro-load" systems:

Hydraulic Separators spotted at ISH 2007 – Frankfurt, Germany

Hydraulic Separators now available in North America

Photo courtesy of Andrew Hagen Radiant Engineering

Photo courtesy of Moses Fischman Caleffi

Bell & Gossett

Sinus North America

Precision Hydronic Products

Summary:

• Hydraulic separation, when properly executed, allows multiple, independently controlled circulators to coexist in a system without interference.

• These devices eliminate the need for a primary loop circulator, which reduces system installation and operating cost.

Reducing Pumping Power: A Deeper Shade of "Green"

The North American Hydronics market now has several "high efficiency" boiler lines In the right applications these boilers have efficiencies in the **95+** range: It may appear there isn't room for improving the efficiency of hydronic systems... At least that's what people who focus solely on the boiler might conclude

For decades our industry has focused on incremental improvements in the thermal efficiency of heat sources.

At the same time we've <u>largely ignored the hydraulic efficiency</u> of the distribution system.

Increasing energy costs present a great opportunity to market hydronics based on using far less "distribution energy" relative to forced air systems.

The present situation:

What draws your attention in the photo below?

Go ahead, count them...

Did you get 21 circulators?

These are not all 80 watt zone circulators.

Those on the wall are about 240 watts each. The larger circulators may be several hundred watts each.

If all these circulators operate simultaneously (at design load) the electrical demand will be in excess of 5000 watts.

That's the heating equivalent of about 17,000 Btu/hr!

Here's another example...

If you run out of wall space consider this installation technique...

Notice the installer left provisions for additional circulators.

So what can you conclude from these photos?

Perhaps that it's <u>GOOD</u> to be in the circulator business these days!

Although as an industry we pride ourselves on ultra high efficiency and "ecofriendly" heat sources, we...

Must look beyond the efficiency of just the heat source.

We need to look at the overall *system* efficiency.

This includes the efficiency of converting fuel in heated water AND *the efficiency of distributing that water throughout the building.*

There is considerable room for improvement.

Defining DISTRIBUTION EFFICIENCY

$Efficiency = \frac{\text{desired OUTPUT quantity}}{\text{necessary INPUT quantity}}$

Distribution efficiency for a space heating system.

distribution efficiency= $\frac{\text{rate of heat delivery}}{\text{rate of energy use by distribution equipment}}$

Consider a system that delivers 120,000 Btu/hr at design load conditions using four circulators operating at 85 watts each. The distribution efficiency of that system is:

distribution efficiency= $\frac{120,000 \text{ Btu/hr}}{340 \text{ watts}} = 353 \frac{\text{Btu/hr}}{\text{watt}}$

So is a distribution efficiency of 353 Btu/hr/watt good or bad?

To answer this you need something to compare it to.

Suppose a furnace blower operates at 850 watts while delivering 80,000 Btu/hr through a duct system. It delivery efficiency would be:

distribution efficiency=
$$\frac{80,000 \text{ Btu/hr}}{850 \text{ watts}} = 94 \frac{\text{Btu/hr}}{\text{watt}}$$

<u>The hydronic system in this comparison has a</u> <u>distribution efficiency almost four times higher than the</u> <u>forced air system.</u>

Water is vastly superior to air as a conveyor belt for heat.
Room for Improvement...

A few years ago I inspected a malfunctioning hydronic heating system in a 10,000 square foot house that contained *40 circulators*.

Assume the *average* circulator wattage is 90 watts.

The design heating load is 400,000 Btu/hr

The distribution efficiency of this system at design load is:

distribution efficiency=
$$\frac{400,000 \text{ Btu/hr}}{40 \times (90 \text{ watts})} = 111 \frac{\text{Btu/hr}}{\text{watt}}$$

Not much better than the previous forced air system at 94 Btu/hr/watt

Water Watts...

It's hard to say if the wattage of past or current generation circulators is "where it needs to be" without knowing the *mechanical* power needed to move fluid through a specific circuit.

$$w_m = 0.4344 \times f \times \Delta P$$

Where:

 W_m = mechanical power required to maintain flow in circuit (watts) f= flow rate in circuit (gpm) ΔP = pressure drop along circuit (psi) 0.4344 = units conversion factor **Example:** How much mechanical power is necessary to sustain a flow of 180 °F water flows at 5 gpm through a circuit of 3/4" copper tubing having an equivalent length of 200 feet?

Solution: The pressure drop associated with this head loss is 3.83 psi.

Putting these numbers into the formula yields:

$$w_m = 0.4344 \times f \times \Delta P = 0.4344 \times 5 \times 3.83 = 8.3$$
watts

That's quite a bit lower than the electrical wattage of even the smallest currently-available circulator. Why?

Because it's only the **mechanical** wattage required (power dissipation by the fluid) - not the electrical **input** wattage to the circulator's motor.

The ratio of the *mechanical wattage* the impeller imparts to the water divided by the *electrical input wattage* to operate the motor is called wireto-water efficiency.

$$n_{w/w} = \frac{W_m}{W_e}$$

Where:

 $n_{w/w}$ = wire-to-water efficiency of the circulator (decimal %) w_m = mechanical power transferred to water by impeller (watts) w_e = electrical power input to motor (watts) If you take operating data for a typical 1/25 hp fixed-speed wet rotor circulator and plug it into this formula the efficiency curve looks as follows:

The electrical wattage needed by the circulator is:

$$w_e = \frac{0.4344 \times f \times \Delta P}{n_{w/w}}$$

A current-generation wet-rotor circulator has a maximum wire-to-water efficiency in the range of 25 percent. If we put the data from previous example into this formula we get the electrical wattage required to maintain flow in the circuit.

$$w_e = \frac{0.4344 \times f \times \Delta P}{n_{w/w}} = \frac{0.4344 \times 5 \times 3.83}{0.25} = 33.2 watts$$

Consider that a flow of 5 gpm in a circuit with a 20 °F temperature drop is moving about 50,000 Btu/hr, and the electrical power to "run the conveyor belt" according to the last calculation is 33.2 watts. The distribution efficiency of such a circuit is:

$$n_d = \frac{Q}{w_e} = \frac{50,000 Btu / hr}{33.2 watt} = 1506 \frac{Btu / hr}{watt}$$

Compare this to a 4-ton rated geothermal water-to-air heat pump delivering 48,000 Btu/hr using a blower operating on 1080 watts. The distribution efficiency of this delivery system is:

$$n_{d} = \frac{Q}{w_{e}} = \frac{48,000 Btu / hr}{1080 watt} = 44.4 \frac{Btu / hr}{watt}$$

These numbers mean that the hydronic system delivers heat to the building using only 2.9 percent (e.g. 44.4/1506) of the electrical power required by the forced air delivery system.

The heat output from most hydronic heat emitters (including radiant panel circuits) increases rapidly at low flow rates but very slowly at high flow rates (assuming constant supply temperature).

At 50 percent of design flow rate heat output is about 89 percent of design output.

At 25 percent of design flow rate heat output is still about 71 percent of design output.

Another governing relationship is the third pump affinity law.

$$P_2 = P_1 \left(\frac{f_2}{f_1}\right)^3$$
 Where:

$$P_1 = \text{power required at flow rate } f_1$$

$$P_2 = \text{power required at flow rate } f_2$$

Operating a circulator at 25 percent of design flow rate, in theory, requires $(0.25)^3 = 0.0156$, or about 1.6 percent of the power input required at design flow rate.

Although these theoretical power reductions are not fully realized due to losses in motors, bearings, etc., they still point to tremendous opportunities to reduce the electrical operating cost.

Reduced head loss:

Circulator energy use for series loop system

Reduced head loss:

Reduce Use Of Antifreeze:

"The only good thing about antifreeze is that it doesn't freeze."

- Antifreeze increases viscosity of system fluid and thus increases head loss (see example below).
- Antifreeze has a lower specific heat than water and thus requires higher flow rates for same heat capacitance.
- If not properly maintained it can lead to corrosion damage requiring major component replacement.

Consider a circuit of 200 feet of 3/4" copper tubing. Assume the circuit operates with a water flow rate of 5 gpm, an average water temperature of 140 °F, and a ΔT of 20 °F. Thus it conveys 50,000 Btu/hr. Assume the circulator is a standard wet rotor unit with 22% wire-to-water efficiency. The head loss of this circuit is 11.45 ft. The corresponding circuit pressure drop is 4.87 psi.

The circulator power required for this is:
$$W_e = \frac{0.4344 \times f \times \Delta P}{n_{w/w}} = \frac{0.4344 \times 5 \times 4.87}{0.22} = 48 \text{ watts}$$

If this same circuit were operated with a 50% solution of propylene glycol, and is to maintain a heat delivery rate of 50,000 Btu/hr, the flow rate must increase to 5.62 gpm due to the lower specific heat of the antifreeze. The increases flow rate, in combination with increased viscosity and density, increases head loss to 16.3 feet, and pressure drop to 7.19 psi.

The circulator power required for this is:
$$w_e = \frac{0.4344 \times f \times \Delta P}{n_{w/w}} = \frac{0.4344 \times 5.62 \times 7.19}{0.22} = 79.8 \text{ watts}$$

<u>A 66% increase in circulator wattage</u> <u>due to the use of the antifreeze solution.</u>

This graph shows the relationship between system flow rate vs. operating hours for a typical Northern European hydronic system.

Recognizing that partial flow is common, circulator engineers have developed "intelligent" operating algorithms for variable speed circulators.

Once such algorithm is called **constant differential pressure control**.

This method is best when head loss of the heat source and common piping is small compared to the head loss of the distribution system.

Another operating algorithm is called **proportional differential pressure control**.

This method is best for systems where the heat source and/or "mains" piping leading to the load circuits dissipate a substantial portion of the circulator head.

Computer modeling has been used to predict electrical energy savings for an <u>intelligently-controlled circulator with ECR motor operating in the</u> <u>proportional pressure mode.</u>

Savings in electrical energy are 60 to 80 percent relative to a fixed speed circulator of equal peak performance in the same application.

Keep in mind that many these circulators *currently* require 230 VAC input.

All these circulators use Electronically Commuted Motors (ECM) with permanent magnet rotors.

All the circulators shown below are rated "A" on the energy labeling system from Europump (European Association of Pump Manufacturers).

To achieve the "A" ranking the simulated energy use of a circulator has to be at least 75% less than a standard wet-rotor circulator.

Single or multi-speed wet-rotor circulators like those commonly used in North America would be rated "D" or "E" on this scale.

Grundfos Alpha: Provides constant and proportional differential pressure and three fixed speed settings. 6-50 watt electrical input.

European version

Wilo Stratos ECO 16F: Provide constant and proportional differential pressure. 5.8-59 watt electrical input.

European version

Grundfos 40-120F: Provide constant and proportional differential pressure. 10-85 watt electrical input.

European version 10-85 watt electrical input

Wilo Stratos 30/1-12: Provide constant and proportional differential pressure. 16-310 watt electrical input.

European version

Laing E4 Auto: Provide proportional differential pressure. 35 watt (peak) electrical input. Fall 2008 availability in US.

Statistics on ECM circulators from Europe*:

In the current 27 countries making up the European Union (EU) there are an estimated 100 million circulators at or under 250 watt peak power input.

Estimated annual electrical consumption of these circulators exceeds *50 billion kilowatthours per year!*

<u>*Source:</u>http://www.energypluspumps.eu/en/cesky/Aboutproject/what_is.html

Statistics on ECM circulators from Europe*:

ECM-based circulators with differential pressure control have are estimated to <u>save at least 60 percent</u> of the pumping energy used by PSC motor type circulators of equivalent peak performance.

ECM-based circulators have wire-to-water efficiency about *twice* that of conventional PSC motor circulators (40's versus low 20's, higher for larger circulators)

Current cost of small ECM-based circulators is about twice that of PSC motor circulator of same peak performance. <u>Estimated payback based on typical</u> <u>European rates is about 2.5 years.</u>

<u>*Source:</u>http://www.energypluspumps.eu/en/cesky/Aboutproject/what_is.html

An example...

During 2005 the old forced air heating system at a church in upstate New York was replaced with a new hydronic system.

The power consumption of the existing 2 horsepower furnace blower was estimated at 1800 watts.

The new system uses several independently controlled thermostatic radiator valves and zone valves.

The new hydronic system has two "system circulators" as seen below.

<u>Only one circulator runs at a given time.</u> In this system the top circulator is the "main," while the lower circulator is the "backup."

Let's compare the estimated seasonal operating cost of the blower in the original system with the "backup" circulator in the new system.

Here are some assumptions for the comparison:

Assume 4000 operating hours per year on the 220 watt circulator (constant circulation during the heating season)

Assume 2000 hours per year on the blower (due to oversizing for the current building heating load)

At the current local cost of \$0.14/kilowatthour for electricity, the difference in operating cost is estimated at:

[1800w x 2000hr - 220w x 4000hr] / 1000w/kw x\$0.14/kwhr

= \$381 per heating season!

It Gets Even Better...

The upper circulator in the photo is a variable speed circulator with ECM motor and intelligent, microprocessor-based differential pressure control operated in the proportional pressure mode

Based on a conservative estimate of 65% energy savings (cited in the European study) the seasonal operating cost of the intelligent circulator should be approximately \$44 per season at \$0.14/kwhr.

The intelligently controlled circulator will provide heat distribution in this building using about 8.5 percent of the electrical energy consumed by the original forced air system.

From Small to Micro

Imagine a circulator that *PEAKS* at 2.5 watts

That's about 1/2 the power required by a simple night light bulb.

Examples of systems with reduced circulator power

Examples of systems with reduced circulator power

- Separate boiler handles DHW, garage floor heating, snowmelting and pool heating.
- DHW has priority
- Low head loss boiler allows direct piping through boiler. No secondary circulator is needed.

A simple system using cast-iron condensing boiler, homerun distribution, and ECM circulator:

A simple system using cast-iron condensing boiler, 2-pipe distribution, and ECM circulator:

Where Do We Go From Here:

Things that will help the North American hydronics industry **improve** <u>distribution efficiency.</u>

1. New motor technology. The PSC (Permanent Split Capacitor) motors used in most current-generation wet-rotor circulators will be replaced with ECM (brushless DC) motor technology.

2. Variable speed pumping: Just as modulating boilers have gained a significant share of the new boiler market, variable speed circulators will soon be displacing a significant share of fixed speed circulators.

These new circulators will be multi-function programmable devices that vary speed based on their operating mode. They will also "adapt" to the circuits they are installed in. **3. Higher Temperature Drops:** We have to stop thinking that water "wants" to or needs to drop 20 degrees F. as it flows around every hydronic piping loop we design.

Instead, we should design for 30 to 40 degree F. temperature drops where appropriate.

Some cast iron boilers can operate with temperature drops as high as 100°F

3. Higher Temperature Drops: We have to stop thinking that water "wants" to or needs to drop 20 degrees F. as it flows around every hydronic piping loop we design.

Instead, we should design for 30 to 40 degree F. temperature drops where appropriate.

Some cast iron boilers can operate with temperature drops as high as 100°F

4. Reduced head loss: As hydronic system designers we make daily "trade-offs" between tube size and circulator power,

For example: Should I stick with 1-inch copper for this circuit and use the 1/12 hp circulator, or go to 1.25 copper and drop down to a 1/25 hp circulator?)

The answer depends on what yields the lowest life-cycle cost, including installation cost and operating cost over an assumed design life.

<u>The North American hydronics industry must get serious about conserving</u> <u>the electrical energy used to move heat from where it's produced to where</u> <u>it's needed.</u>

As you read this, manufacturers are already working on the next generation of hydronic circulators. <u>However, you don't have to wait for new high-tech</u> products. Here are a few things you can do right now:

1. Consider upsizing you piping one size and see what a difference that makes in circulator sizing. Use accurate design tools to evaluate these trade-offs.

2. Use copper or polymer tubing rather than threaded piping and fittings to reduce head loss.

3. Don't "overpump" then correct for it with throttling valves, especially in series loops.

4. Compare the wire-to-water efficiency of currently available circulators, especially when larger circulators are needed. There are efficiency differences between wet rotor circulators and 2-piece or 3-piece circulators.

5. Try to operate the circulator in the middle of it pump curve near the "best efficiency point."

6. Don't get carried away with zone circulators. Just because you can create 20 individually-pumped zones in a house doesn't mean you should, especially when those zone may only need flow rates of 5 gpm or less.

Although we'll never achieve "perpetual flow" in hydronic piping systems it's always good to work in that direction.

It's a situation rife with opportunity!

Have you ever been asked to provide hydronic heating for a condominium complex, apartment building, or leased multi-tenant commercial building?

Maybe the owner wanted **separate heat sources** in each unit to keep utility costs separated.

You agreed because you knew of no alternative.

In most cases the design heating loads of such spaces are far less than the output of the smallest available boiler.

The end result was short cycling heat sources and low seasonal efficiency.

A far better approach is to "centralize" heat production and distribute this heat to each unit as needed.

In Europe, "district heating" systems use large municipal boiler plants to supply heat through insulated underground mains to buildings spread out over several city blocks.

Smaller systems use a single mechanical room to serve multiple living units or rental properties.

In each case it's essential to accurately meter heat delivered to each load.

The technology for this has existed for several years.

This heat meter is in a German hotel, and dates back to the 1960s.

It reads in units of MWh (mega watt hours)

It also shows the current temperature Differential on the subsystem it is monitoring. New electronics technology now makes this concept possible for smaller buildings.

Example of a small, self-contained heat metering systems (ISTEC)

Heat metering involves the simultaneous measurement of flow and temperature change.

Two types of BTU meters in a small system

Theory:

The rate of sensible heat transfer to a load can be calculated using the following formula:

$$q = (8.01 \times D \times c) \times f \times (\Delta T)$$

Where:

$$D = density of fluid (lb/ft3)$$

- c = specific heat of fluid (Btu/lb/°F)
- f = flow rate (gpm)
- ΔT = temperature change of fluid (°F)
- 8.01 = units conversion factor

Here's an example:

Water at 140 °F enters the heating distribution system for a condo at 5 gpm. The water returns from the distribution system at 127 °F. What is the rate of heat release into the condo under these conditions?

First we have to estimate the **density** of the water at the average temperature of the system using the formula below.

 $D = 62.56 + 0.0003413 \times T - 0.00006255 \times T^2$

Where:

 $D = density of water (lb/ft^3)$

T = temperature of water (°F)

At 133.5 °F, the density of water calculates to be 61.49 lb/ft3

Putting the numbers in the formula yields:

$$q = (8.01 \times 61.49 \times 1.00) \times 5 \times (140 - 127) = 32,015 Btu / hr$$

IF these flow and temperature conditions held constant for one hour the amount of heat transferred would be:

$$Heat = \left(32,015\frac{BTU}{hr}\right) \times 1hr = 32,015Btu$$

Such a scenario is very unlikely. Within an hour both temperatures and flow rate are likely to vary, in some cases considerably.

The solution is to total up the heat moved over smaller time periods using the formula below.

Total heat = (heat transfer rate) × time

Here's an example where the time period is 1/60 hr.

Minute #	Tsupply (°F)	Treturn (°F)	Flow rate (gpm)	Heat rate (Btu/hr)	Heat Metered (Btu)
1	140	127	5.0	32015	533.5
2	139	125	4.9	33727	562.1
3	138	123	5.0	36874	614.6
			1	TOTAL =	1710.2

• Heat for space heating and domestic hot water (DHW) is generated by a central boiler plant that operates at higher efficiencies than individual heat sources.

• Using a centralized boiler plant with a single gas meter eliminates the monthly charges associated with multiple gas meters (one for every unit).

• Eliminates need to install gas piping throughout the building. Reduce cost, and decreases danger of accidental gas leakage.

• Eliminates need for venting a separate heat source in each unit.

• Boiler servicing and collection of heat meter data can be done (with some metering systems) without entering individual units.

• Floor space freed up by eliminating boiler and DHW tank reduces mechanical system to a compact wall-mounted panel. The extra floor space adds value to property.

• Any noise associated with the heat source is confined to the mechanical room.

• Possibility of carbon monoxide leakage is limited to the central mechanical room.

• Renters have the option of higher space temperatures if they choose but are billed accordingly. This encourages energy conservation. *Some studies indicate energy use reduction of at least 20 percent based on the "user incentive" to converse energy.*

• Heat metering can be used as a trouble shooting tool to verify the actual rate of heat delivery to the space.

Piping of a typical "substation" for condo, apartment, or office, (space heating and instantaneous DHW)

Piping of a typical "substation" for condo, apartment, or office, (space heating and instantaneous DHW)

Piping of a typical "substation" for condo, apartment, or office, (space heating and storage-type DHW)

Piping Concepts (centralized multiple boiler system)

Centralized multiple boiler system with buffer tank

Buffer tank helps with high peak demands

Buffer tank also serves as Hydraulic separator between boilers and distribution mains

• Typical small CHP unit yields about 5kw electrical output + 50,000 Btu/hr thermal output

• Boilers stage / modulate as necessary during higher loads.

Heat metering in large German office building

Web-enabled BTU Metering equipment is now available.

New, low-cost multi-function sensor technology (for flow, pressure, and temperature) will allow appliances to monitor and report their own energy flows.

ASHRAE standard on energy cost allocation

We've only discussed the basics of BTU metering.

In my opinion it's a highly underutilized strategy in North America, at least for the present.

It's perfect for the multiple unit buildings (both residential and commercial) now being built in North America.

It addresses the concerns of developers, owners, and tenants in a synergistic and mutually beneficial manner.

It also encourages energy conservation while providing the potential of unsurpassed comfort heating and instantly available DHW.

It's time for our industry to get serious with this concept and deploy it on a much larger basis.

Creative Use of Homerun Distribution Systems

Over the last few decades, many different piping layouts have been used in hydronic heating system.

Almost all were developed around **RIGID PIPING**.

Fast-forward 50 years to the age of: Zones gone Wild...

Lots or rigid pipe...

Lots of fittings...

Lots of joints...

At times there were "hints" that manifolded individual circuits could be used...

But this concept was still built around the use of RIGID PIPING.

As more time passed, North American heating pros started mixing flexible PEX and PEX-AL-PEX tubing into system along with rigid tubing.

However, PEX and PEX-AL-PEX were still viewed *primarily* for use in radiant panel circuits.

Finally, many hydronic heating pros have recognized the potential of flexible PEX or PEX-AL-PEX as a <u>universal</u> <u>hydronic distribution pipe.</u>

The temperature / pressure rating of these materials, along with their flexibly, allows them to be used with traditional higher temperature heat emitters.

The most common approach has come to be known as a <u>"homerun"</u> system.

Concept of a homerun distribution system...

Schematic of a homerun distribution system

Two runs of small diameter (3/8" or 1/2") PEX, or PEX-AL-PEX tubing is routed from a manifold station to each heat emitter.

The ability to "fish" tubing through framing cavities is a tremendous advantage over rigid tubing, especially in retrofit situations.

Homerun systems allow the heat output of each room to be individually controlled.

Homerun systems deliver the same water temperature to each heat emitter.

Homerun systems adapt to almost any combination of heat emitters.

Balancing valves on manifold compensate for the flow resistances of different circuits.

Homerun systems allow several methods of zoning.

One approach is to install valved manifolds equipped with low voltage valve actuators on each circuit. Another approach is to install a thermostatic radiator valve (TRV) on each heat emitter.

Suppose you wanted to install a homerun system in a tall building such as a three-story house?

The solution is to plan a "stacked" manifold system supplied by a vertical riser system

Plan the vertical risers so they are reasonably close to the manifold station on each floor.

The modern way to install fin-tube baseboard:

- Thermostatic radiator valve on each baseboard
- ECM-based pressureregulated circulator.

baseboard #3

The simplest approach is a single zone system where all heat emitters operate simultaneously.

Adding TRVs to each heat emitter along with boiler reset provides excellent zoning and reduces fuel usage.

Zoning can also be done using room thermostats and 24VAC valve actuators.

Don't Forget the Details:

• When <u>zoning with valves</u> in combination with a <u>fixed</u> <u>speed circulator</u>, install a differential pressure bypass

An ECM-based variable speed, pressure regulated circulator can be used with either TRV or actuator zoning.

It eliminates need for differential pressure bypass valve.

Here's the same concept along with a mod/con boiler...

For a homerun system the pressure regulated circulator can operate in constant differential pressure mode.

A Grand-slam homerun system for "Micro-load" zoning:

Designing homerun systems

Homerun systems use parallel piping circuits.

The system can be modeled as a network of hydraulic resistors.

Designing homerun systems

This can be done "manually," or with the Hydronics Design Studio software.

Hydronic Circuit Simulator	Pro V. 1.13			
LE EXIT SETTINGS WEBSITE				
	fluids		÷ · · · · · · · · · · · · · · · · · · ·	Print Screen Number of Branch 6
	D Fluid Supply	150 °F	 Show balancing valves No balance valves 	 Define "header" piping Negligible "header" piping
System 10.36 GPM On Flow 10.36 GPM Off Head Added 7.02 ft Diff. Press. 2.99 PSI Bypass Valve Caleffi 519500(3/4) • C Threshold 1.5 psi Pressure Range 1.42 To 8.52 GPM 4.49	On On On Off Off	On On On On Off Off Off Off Off Off Define Piping +Heat Emitter Cv Cv N/A N/A N/A A		
System Fluid Water	GPM GPM GPM .98 .98 .98	GPM GPM GPM .98 .98 .98		
System's Total Heat Output 0.0 Common Piping	Btu/hr Btu/hr Btu/hr 0.0 0.0 0.0	Blu/hr Blu/hr Blu/hr 0.0 0.0 0.0		
Equivalent .10891 Hydraulic Resistance (D to E)	5			

Summary of Benefits of Homerun Distribution Systems:

1. Small diameter PEX or PEX-AL-PEX tubing is easily routed through framing. *If you can run an electrical cable from point A to point B, chances are you can also pull through small diameter tubing.*

2. All heat emitters operate at same water temperature, and thus don't require design calculations to correct for the temperature drops that occur in series or 1-pipe systems.

3. Ideal in systems requiring *room-by-room temperature control*.

4. Home run circuits can often *"use up" tubing remnants left over from radiant floor heating projects.*

Summary of Benefits of Homerun Distribution Systems:

5. When necessary, *flow through individual heat emitters can be controlled from the manifold* (rather than using valves mounted in the heat emitters)

6. *Allows access to spaces not possible using rigid tubing*. This is especially helpful in retrofit and remodeling projects.

7. Most homerun circuits will be continuous from manifold to heat emitter. *Minimal if any concealed joints*.

8. *Well suited variable speed circulators* that maintain constant differential pressure or proportional differential pressure on the distribution system.

Incorporation Solar Thermal Subsystems for Hydronic Space Heating & DHW

For me, the current interest in solar heating is "like déjà vu - all over again"

My first engineering job (in 1978) was with a small company called Revere Solar & Architectural Products, Inc. in Rome, NY.

We manufactured flat plate solar collectors and solar DHW systems.

In 1981 we installed our own active solar energy system (6 Revere collectors)

After 28 years this drainback system is still operating fine.

Most modern solar collectors fall into two categories:

72"-96" (typical) Evacuated tube collectors: insulated copper manifold 72" to 84" (typical) evacuated tube envelopecopper absorber stripconcentric copper tubing selected surface coating copper absorber strip concentric copper heat pipe evacuated annular space inner glass tube outer glass tube 4 10 ÷.

Solar collector testing

- US Testing Procedure:
 - ASHRAE Standard 93-77 "Methods of Testing to Determine the Thermal Performance of Solar Collectors"
- Results published in collector manufacturer's technical literature.
- Can be depicted graphically: Slope and vertical axis intercept are established through testing
- Collectors with SRCC (Solar Rating & Certification Corporation) OG-100 certification meet standards for federal and state tax credits.

Want to start a war?

Ask those in the solar thermal industry the following question...

Which is better - flat plate collectors or evacuated tube collectors?

The answer depends on both QUANTITATIVE and QUALITATIVE comparisons

QUANTITATIVE factors:

- Efficiency
- Installed cost
- Total energy collected by system during the year

QUALITATIVE factors:

- Appearance
- Installation ease
- Snow shedding ability
- Life expectancy
- Ability to survive extreme weather
- Ability to survive "stagnation" conditions (full solar intensity w/ no flow)

Thermal Efficiency of a solar collector (based on ASHRAE 93-77 standard)

Instantaneous collector efficiency= $\frac{\text{thermal output from collector (Btu/hr)}}{\text{solar radiation striking GROSS collector area (Btu/hr)}}$

The thermal efficiency of a collector represented as a graph:

Where:

$$\eta_{collector} = (F_R \tau \alpha) - (F_R U_L) \times \left[\frac{T_i - T_a}{I}\right]$$

 $\begin{array}{l} T_i = \text{inlet fluid temperature to collector (°F)} \\ T_a = \text{ambient air temperature surrounding collector (°F)} \\ I = \text{solar radiation intensity incident on collector (Btu/hr/sq. ft.)} \\ Frta = Y-\text{intercept (determined through testing)} \\ FrUL = \text{slope of efficiency line (determined through testing)} \end{array}$
Some representative collector efficiency graphs:

Collector efficiency is tested and reported by the SRCC (Solar Rating & Certification Corporation) under standard OG-100.

All information is available for free online at:

http://www.solarrating.org/ratings/ratings.htm

SOLA	R COLLECT	TOR	CERTIFIED	SOLAR COLLI	ECTOR		
CERTIFICATION AND RATING		SUPPLIER: Solar Skies Mfg, LLC 800 Industrial Park, Hwy 28 West Starbuck, MN 56381 WODEL: Solar Skies SS-40 COLLECTOR TYPE: Glazed Flat-Plate CERTIFICATION #: 100-2007-039F					
SRCC OG-100							
	-	COLLEC	FOR THERM	AL PERFORM	ANCE RATI	NG	
A	legajoules Per	Panel Per Da	av	1	housands of Em	Ber Panel Per Di	
CATEGORY (Ti-Ta)	CLEAR DAY 23 MJ/m²-d	MILDLY CLOUDY 17 MJ/m ² -d	CLOUDY DAY 11 MJ/m ² -d	CATEGORY (TeTz)	CLEAE DAY 2000 Brant d	MEDEN CLOUDY 1500 Broth-d	CLOUDY DAY 1000 Broth
A (-5°C)	55	41	28	A. (95) .	1.12	12 A.	1.1.1.1.1
B (5°C)	50	36	23	8. (975)	1.1.10	55.55	
C (20°C)	42	29	16	C (36°F)	30	- 27	
D (50°C)	25	13	3	D (90°F)			1 <u>1</u>
E (80°C)	10	1		E 014895	6		
			Original Certifica	tion Date: October	nate) D-Water Hea 4, 2007	ting (Cool Cimate) E	-Air Condition
COLLECT Great A Der Wei Test Pre	OR SPECIF gat mare:	ICATIONS 3.696 m ² 69.4 kg 1103 EPs	Original Certifica 19-78 fr 53- fb 53- fb 190 pmg	hon Date: October Net A Stard	4, 2007 perture Area: Capacity:	148) m ² 5.1 1	37.47 tř 1.6 gd
COLLECT Great A Dev Wei Test Pre COLLECT Frame:	OR SPECIF gat mare OR MATER	ICATION 3696 m 594 kg 103 gPy UALS Anodized Alt	Original Certifica 19-78 B 151 Ib 160 gaug	ter nearing (winn Cir hon Date: October Net A Stand	A 2007 perfore Area: Capacity: PRES Flow	sure DROP	17.47 ft 1 d. gai
COLLECT Great A Der Wei Test Pre COLLECT Frame: Cover (f	OR SPECIF gat mate: OR MATER Dater):	IC ATION 1696 nr 594 kg 103 kPs 103 kPs UALS Anodized Ahr Low Iron Ten	Original Certifica 19-78 B 151 B 160 page minom mered Glass	ter nearing (winn Cir hon Date: October Net A Stand	A, 2007 perture Area: Capacity: PRES Flow	SURE DROP	An Condition
COLLECT Green Au Dry Wei Test Pre COLLECT Frame: Cover (C Cover (C Absorbe Absorbe Insulatio Iasulatio	OR SPECIF gat mater OR MATER Duter): nuer): r Material: r Coating: m (Side): m (Back);	ICATION 3.690 m 69.4 kg 1103 kP 1103 kP UALS Anodized Alu Low Iron Ten None Tube - Coppe Selective Coa Polyisocyanus Polyisocyanus	Original Certifica 19.78 fb 13.9 fb 190 mag minom spered Glass r / Plate - Copper I trag rate rate	fin find find the first	A 2007 Perform Area Capacity PRES Flow gpm	SURE DROP	37 47 ft ² 1.4 gai
COLLECTO Green An Dry Wei Test Pre COLLECTO Frame: Cover (I Absorbe Absorbe Insulatio Insulatio TECHNIC/ Efficienc SI U IP U	OR SPECIF rational parts or MATER Duter): n Material: r Coating: m (Side): m (Back): AL INFORM y Equation [N mits: η = mits: η =	IC ATTON 1696 nr 1694 kg 1101 gPy ILOI gPy ILOI gPy ILON Ten None Tube - Coppe Selective Coa Polyisocyanus Polyisocyanus IATION OTE: Based 0.691 - 0	Original Certifica 19:78 fr 15:1 fb 15:0 gauge minjum spered Glass r / Plate - Copper I trug rate rate on gross area and 3960 (P)/I 5985 (P)/I	Image: miles Image: miles fine "let & Stead fine "let & Stead fine "let & Stead fine "let & Stead d (P) = Ti-Ta] -0.0197 (P) ² /1 -0.0019 (P) ² /1 -0.0019 (P) ² /1	A 2007 PRES PRES Flow PRES Vinter 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	SURE DROP	AP in H ₂ C W/m ² *C Bhu/br ft ² .0

Collector efficiency is a function of the "inlet fluid parameter"

$$p = \frac{\left(T_i - T_a\right)}{I}$$
Where:

$$T_i = \text{inlet fluid temperature to collector (°F)}$$

$$T_a = \text{ambient air temperature surrounding collector (°F)}$$

$$I = \text{solar radiation intensity incident on collector (Btu/hr/sq. ft.)}$$

The higher the inlet fluid parameter the more severe the conditions under which the collector operates as it converts solar radiation to useful heat output.

Here's an example: Assume a fin-tube baseboard system provides water at $170 \,^{\circ}\text{F}$ to the inlet of both flat plate and evacuated tube collectors having the efficiency shown in figure 5. The outdoor ambient temperature is $20 \,^{\circ}\text{F}$, and the solar radiation incident on the collector is 250 Btu/hr/sq ft (reasonably bright conditions). The inlet fluid parameter is:

$$p = \frac{\left(T_i - T_a\right)}{I} = \frac{\left(170 - 20\right)}{250} = 0.6$$

The corresponding efficiency of the evacuated tube collector to be 0.40 (40%), while the efficiency of the flat plate collector under the same conditions is only 0.27 (27%).

Collector efficiency is a function of the "inlet fluid parameter"

What happens when the two collectors operate within a low temperature system, such as slab-type floor heating? Assume the water temperature supplied to the collectors is now 95 °F and the solar radiation intensity and air temperature remain the same. The inlet fluid parameter is now:

$$p = \frac{\left(T_i - T_a\right)}{I} = \frac{\left(95 - 20\right)}{250} = 0.3$$
Under these conditions the efficiency of the evacuated tube is 0.46 (46%), while that of the flat plate collector is 0.52 (52%).

Collector Stagnation Temperature:

Collector stagnation occurs when sunlight is incident on the collector, but no fluid moves through it to remove the captured energy.

Every collector will experience stagnation at some point, probably many times.

Reasons for stagnation:

- during installation (prior to completion of piping)
- failure of a controller or a sensor
- Tank reaches maximum temperature setting of controller
- power outage during the day

(How hot can an absorber plate get?)

At stagnation, collector efficiency is zero.

Ti becomes the stagnation temperature of the absorber plate.

$$\eta_{collector} = \left(F_R \tau \alpha\right) - \left(F_R U_L\right) \left[\frac{T_i - T_a}{I}\right] = 0$$
$$T_{stagnation} = \left[\frac{\left(F_R \tau \alpha\right)}{\left(F_R U_L\right)}\right] I + T_a$$

Here's an example for a typical flat plate collector:

$$T_{stagnation} = \left[\frac{\left(F_{R}\tau\alpha\right)}{\left(F_{R}U_{L}\right)}\right]I + T_{a} = \left[\frac{0.706}{.865}\right]317 + 85 = 344^{\circ}F$$

Typical collector slope angles:

 For Solar Water Heating Slope = local latitude (from horizontal) Slope at least 40 degrees in snowfall climates

• For Space Heating Slope = local latitude + 15 degrees

Solar thermal system design

There are several principles to observe when designing a solar energy subsystem for DHW or space heating.

1. The cooler the collector array can operate the lower its thermal losses and thus the higher its efficiency.

2. Conventional energy sources (oil, gas, and electricity) should only be "invoked" when needed by the load (e.g. not converted to and stored as thermal energy).

3. The collector array and all piping outside of heated space must be protected against freezing during non-operational periods.

Watch for how these principles are applied in the designs that follow...

Solar thermal system - basic concept

Source: Caleffi idronics journal

Q: What's the problem with this design?

A. The collectors would be ruined the first time the outdoor temperature <u>approaches</u> freezing

Freeze protection must be provided in ALL US and Canadian climates.

Q: What's another the problem with this design?

A. The warm fluid in the storage tank will reverse thermosyphon through the collector array at night and loss most of the heat previously stored in tank.

A properly installed check valve prevents this

Closed Loop/Antifreeze Systems:

One way to protect the collector array and exposed piping against freezing is to use an antifreeze solution in the collector circuit.

Advantages of closed-loop antifreeze systems:

• Piping between the collectors and storage tank can be installed in virtually any orientation, inside or outside..

• Since the collector loop is filled, and flow rate is relatively low, the collector circulator can be very small.

• In some systems, a collector circulator with a DC motor can be powered directly and at variable speed by a photovoltaic panel (more on this later).

Disadvantages of closed-loop antifreeze systems:

• The temperature differential across the heat exchanger forces the collectors to operate at a higher temperature relative to tank water flowing directly through collectors.

• The glycol solution is subject to thermal breakdown due to stagnation (no flow) conditions under full sun. Many antifreeze-based systems use a "heat dump" to reduce degradation due to stagnation.

• The glycol solution requires periodic maintenance to prevent it from becoming acidic and corroding the system.

<u>Single tank</u> solar DHW system using internal heat exchanger.

Electric heating element serves as Backup.

Tank should be very well insulated to Minimize standby loss (2" urethane minimum)

Dual tank solar DHW system using internal heat exchanger.

Electric heating element serves as Backup.

Allows solar storage to operate at lowest possible temperature for highest possible collector efficiency.

Higher standby heat loss due to Added surface area of two tanks.

valve

Single tank solar DHW system using internal heat exchanger.

"Tankless" instantaneous water heater provides backup when needed. (Must be modulating burner) - verify with manufacturer

Diverter valve prevents solar heated water from flowing through tankless heater when not necessary.

Lower standby heat loss due to Reduced surface area and "smart" water routing.

Solar circulation stations are available that consolidate individual

air vent w/ shut off

valve

Possible "heat dump" arrangement

Solar controller brings storage tank to preset upper temperature limit.

Diverter valve then routes solar collector fluid through heat exchanger to heat pool

Closed Loop/Antifreeze System: (w/ forced air delivery)

A "conventional system" using a mod/con boiler to supply heat and DHW:

low temperature

radiant panel circuits

DHW

anti-scald

tempering

valve

indirect water heater

Space heating system along side a solar subsystem.

Merging the two systems together - simpler controls

Merging the two systems together -simpler controls

CONTROL SEQUENCE:

1. Solar collection is controlled by the differential temperature controller (C1) operating circulators (P1a and P1b). If collectors are warmer than storage tank by $5^{\circ}F$ these circulators operate. If the differential drops to $2^{\circ}F$ or less these circulators are turned off.

2. Upon a call for space heating, the mixing valve controller (C2) calculates the necessary water supply temperature to the radiant panel circuits. Controller (C2) calls for heating by closing a set of dry contacts sending 24 VAC to power up outdoor reset controller (C3) monitoring temperature at top of solar storage tank. If temperature in storage tank is at or above the calculated target temperature minus half control differential, the normally closed contacts in the relay turn on the tank circulator. If the tank is below this temperature the normally open contact of the relay close to provide a call for space heating and the boiler turns on the boiler circulator (P3). The boiler temperature is controlled by the boiler's internal reset controller.

3. If the DHW tank calls for heating, the tank circulator (P2) is turned off, circulator (P4) is turned on, the boiler is turned on (e.g. receive a DHW heating demand), and the boiler circulator (P3) operates. The boiler temperature is controlled based on its setting for DHW mode.

The only limitation of this approach is that solarsourced energy cannot "top off" the DHW tank through the indirect coil to make up for stand-by loss when there is no DHW draw.

DHW is priority - surplus heat dumped to 2nd tank.

CONTROL SEQUENCE:

1. Solar collection is controlled by the differential temperature controller operating circulator (P1). If collectors are warmer than storage tank by $5^{\circ}F$ the circulator in the solar circulation station operates. If the differential drops to $2^{\circ}F$ or less this circulator is turned off. If the DHW tank temperature exceeds a set limit, the solar controller operates the diverting valve (D1) to send heat to the aux storage tank.

2. Upon a call for space heating, the mixing valve controller (C2) calculates the necessary water supply temperature to the radiant panel circuits. Controller (C2) calls for heat by closing a set of dry contacts sending 24 VAC to power up outdoor reset controller (C3). which monitors temperature at top of Auxiliary storage tank. If temperature in this tank is at or above the calculated target temperature minus half control differential, the normally closed contact in the outdoor reset controller is open, and the diverter valve (D2) is unpowered, routing flow through the auxiliary storage tank. When the temperature in the Auxiliary storage tank drops to *less than* the calculated target temperature minus 1/2 differential, the 24 VAC diverter valve (D2) is powered on sending flow through the boiler. The end switch in the diverter valve closes to provide a dry contact closure to signal a heat demand to the boiler. The boiler fires and operates on its own reset curve.

Use of **DUAL COIL tank** in system for solar DHW and space heating

Use of TANK-IN-TANK storage system for solar DHW and space heating

Use of dual coil tank with INTEGRAL BURNER for DHW and space heating

Domestic water in storage tank, external heat exchanger for space heating

Gravity Drain<u>back</u> Systems

An alternative to antifreeze is a direct circulation approach known as gravity drainback.

The water drains from the collectors whenever the solar array pump is off.

The collector circulator in a drainback system must be sized to lift the water to the top of the collector array.

This distance represents "lift head" for the circulator while the supply pipe and collectors are being filled.

Gravity Drain<u>back</u> Systems

Another approach is use of a separate drainback tank.

The higher the drainback tank is relative to the top of the collectors, the lower the lift head, and the smaller the pumping power requirement.

It is absolutely necessary that the collectors and all exposed piping be pitched a minimum of 1/4 inch per foot toward the storage tank for complete drainage.

It is absolutely necessary that the collectors and all exposed piping be pitched a minimum of 1/4 inch per foot toward the storage tank for complete drainage.

sloped collector array for drainback system using "harp" style absorber plates

The return line should be sized for a minimum flow velocity of 2 feet per second at the flow rate present when the water level reaches the top of the collector array.

This allows downward flow to entrain air bubbles and return them to the top of the storage tank.

A common technique is to use 2 circulators in series to supply the collector array.

After a 1-3 minute period a siphon is established over the top of the collector loop so that the upper circulator can be turned off to reduce electrical demand.

lift head

Gravity Drainback Systems (Series circulators)

Pressurized gravity drainback system w/ internal coil for domestic water heating. Boiler maintains top of solar storage tank @ suitable temperature for DHW.

Pressurized gravity drainback system w/ <u>internal</u> coil for domestic water heating. Boiler never heats solar storage tank.

Pressurized gravity drainback system w/ <u>external plate heat exchanger</u> for domestic water heating.

Boiler does NOT maintain temperature of storage.
Upon a draw of DHW, flow switch turns on small circulator to preheat domestic water through plate HX
Solar tank CAN'T buffer space heating when boiler supplies heat.
Solar tank can serve as heat source to indirect tank coil

Pressurized gravity drainback system w/ external HX for domestic water heating.

European (ROTEX) tank with integral burner and solar heating for DHW and

- E Solar zone
- F Heating support zone
- G Control and pump unit
- (Accessories)

- 5 Air supply
- 6 Condensate drain 7 Domestic hot water heat
- exchanger (stainless steel)
- 10 Heating heat exchanger
- 11 Heat insulation sleeve
- 12 Fan burner
- 13 Non return valves (accessories)

Software for evaluation solar system performance and economic viability

RET Screen: Developed by Natural Resources Canada, RETScreen is powerful simulation software that can be used to study the technical and economic feasibility of active solar energy systems. It's available as a <u>free</u> download from <u>www.RETscreen.net</u>

F-Chart: The software is the latest version of a method for predicting solar system performance and economic viability. It was developed at the University of Wisconsin, and has been used in the solar industry for over three decades. It's available from: www.fchart.com

Tsol: Developed and primarily used in Europe, Tsol is simulation software for active solar thermal systems. It is available in both "express" and "professional" versions from http://www.valentin.de/.

SolarPro IP: Developed as a tool for active solar system design and simulation based on hour-by-hour calculations. This version is set up for traditional North American units, and has weather data for 239 US locations. It's available from Maui Solar www.mauisolarsoftware.com

Knowing how to integrate solar energy collection with conventional hydronic heating is a valuable asset to hydronic professionals.

Predicted performance of combined solar space heating & DHW system sizing using F-chart:

Assumptions:

112 gross square feet of flat plate collectors (Frta=0.76, Frul = 0.825)
Collectors are sloped at 60° and face directly south
300 gallon storage tank
Low temperature floor heating delivery system
Coil in top of storage tank for DHW

Technical books on active solar system design:

Planning & Installing Solar Thermal Systems

By German section of the International Solar Energy Society 2006, Stylus Publishers, ISBN 1-84407-125-1 (English version) Available at: www.hydronicpros.com

Solar Engineering of Thermal Processes, 3rd Edition

By Duffie and Beckman 2006, Wiley, ISBN 0-471-69867-9

Solar Heating Systems for Houses

A design handbook for solar combisystems By Werner Weiss 2006, Stylus Publishers, ISBN 1-902916-46-8 Available at: www.hydronicpros.com

Thank you for attending this session.

Thanks also to Co-op Power for the invitation to participate in the Sustainable Energy Summit.

Over 200 of John's articles and columns from the last 12 years of *PM* and *PM Engineer* covering everything from heat loss to hydraulic separators. All in full color, fully searchable PDF files.

Now available at www.hydronicpros.com

For more information on designing hydronic systems visit our website at www.hydronicpros.com